GTk Python Cheat Sheet: Complex Data Types

“A puzzle a day to learn, code, and play”

List

Adding
elements

Removal
Reversing

Sorting

Indexing

Stack

Set

Dictionary

Reading and

Description

A container data type that stores a
sequence of elements. Unlike strings, lists
are mutable: modification possible.

Add elements to a list with (i) append, (ii)
insert, or (iii) list concatenation.
The append operation is very fast.

Removing an element can be slower.
This reverses the order of list elements.

Sorts a list. The computational complexity
of sorting is superlinear in the no. list
elements.

Finds the first occurrence of an element in
the list & returns its index. Can be slow as
the whole list is traversed.

Python lists can be used intuitively as
stacks via the two list operations append()

and pop().

A set is an unordered collection of unique
elements (“at-most-once”).

The dictionary is a useful data structure for
storing (key, value) pairs.

Read and write elements by specifying the

Example

1= [1, 2 2]
print(len(l)) # 3

(1, 2,
[1, 2,
(1, 2,

2].append(4) # [1, 2, 2, 4]
4].insert(2,2) # [1, 2, 2, 4]
2] + [4] # [1, 2, 2, 4]

[1, 2, 2, 4].remove(l) # [2, 2, 4]
[1, 2, 3].reverse() # [3, 2, 1]
[2, 4, 2].sort() # [2, 2, 4]

[2, 2,
[2, 2,

4].index(2) # index of element 2 is "@"
4].index(2,1) # index of el. 2 after pos 1 is "1"

stack = [3]

stack.append(42) # [3, 42]
stack.pop() # 42 (stack: [3])
stack.pop() # 3 (stack: [])

basket = {'apple', 'eggs', 'banana', 'orange'}

same = set(['apple’', 'eggs', 'banana’', 'orange'])

calories = {'apple' : 52, 'banana' : 89, 'choco' : 546}

print(calories['apple'] < calories['choco']) # True

writing key within the brackets. Use the keys() and | calories['cappu'] = 74
elements values() functions to access all keys and print(calories['banana'] < calories['cappu']) # False

values of the dictionary. print('apple' in calories.keys()) # True

print(52 in calories.values()) # True

Dictionary You can access the (key, value) pairs of a for k, v in calories.items():
Looping dictionary with the items() method. print(k) if v > 500 else None # 'choco’
Membership | Check with the ‘in” keyword whether the basket = {'apple', 'eggs', 'banana', 'orange'}
operator set, list, or dictionary contains an element. | print('eggs' in basket) # True

Set containment is faster than list print('mushroom' in basket) # False

containment.
List and Set | List comprehension is the concise Python # List comprehension
Comprehens | way to create lists. Use brackets plus an 1=[('Hi " + x) for x in ['Alice', 'Bob’', 'Pete']]
ion expression, followed by a for clause. Close | print(1l) # ['Hi Alice', 'Hi Bob', 'Hi Pete']

with zero or more for or if clauses.

Set comprehension is similar to list
comprehension.

12 = [x * y for x in range(3) for y in range(3) if x>y]
print(12) # [e, @, 2]

Set comprehension

squares = { x**2 for x in [@,2,4] if x < 4 } # {e, 4}

@CAREER TREK CAREER.TREK @CAREER TREK

https://www.youtube.com/channel/UCJsL6XC1ZFrB2tlAoxDz3lw
https://www.instagram.com/career.trek/
https://www.linkedin.com/company/careertrekacademy/

