
LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SATry out the interactive SQL Basics course at LearnSQL.com, and check out our other SQL courses.

SQL Basics Cheat Sheet

SQL, or Structured Query Language, is a language to talk
to databases. It allows you to select specific data and to
build complex reports. Today, SQL is a universal language
of data. It is used in practically all technologies that process
data.

SQL

SAMPLE DATA

CITY
id name country_id population rating
1 Paris 1 2243000 5
2 Berlin 2 3460000 3
...

COUNTRY
id name population area
1 France 66600000 640680
2 Germany 80700000 357000
...

ALIASES
COLUMNS
SELECT name AS city_name
FROM city;

TABLES
SELECT co.name, ci.name
FROM city AS ci
JOIN country AS co
 ON ci.country_id = co.id;

QUERYING MULTIPLE TABLES
INNER JOIN

SELECT city.name, country.name
FROM city
[INNER] JOIN country
 ON city.country_id = country.id;

CITY
id name country_id
1 Paris 1
2 Berlin 2
3 Warsaw 4

COUNTRY
id name
1 France
2 Germany
3 Iceland

JOIN (or explicitly INNER JOIN) returns rows that have
matching values in both tables.

LEFT JOIN

SELECT city.name, country.name
FROM city
LEFT JOIN country
 ON city.country_id = country.id;
CITY

id name country_id
1 Paris 1
2 Berlin 2
3 Warsaw 4

COUNTRY
id name
1 France
2 Germany

NULL NULL

LEFT JOIN returns all rows from the left table with
corresponding rows from the right table. If there's no
matching row, NULLs are returned as values from the
second table.

RIGHT JOIN

SELECT city.name, country.name
FROM city
RIGHT JOIN country
 ON city.country_id = country.id;

CITY
id name country_id
1 Paris 1
2 Berlin 2

NULL NULL NULL

COUNTRY
id name
1 France
2 Germany
3 Iceland

RIGHT JOIN returns all rows from the right table with
corresponding rows from the left table. If there's no
matching row, NULLs are returned as values from the left
table.

FULL JOIN

SELECT city.name, country.name
FROM city
FULL [OUTER] JOIN country
 ON city.country_id = country.id;

COUNTRY
id name
1 France
2 Germany

NULL NULL
3 Iceland

CITY
id name country_id
1 Paris 1
2 Berlin 2
3 Warsaw 4

NULL NULL NULL

FULL JOIN (or explicitly FULL OUTER JOIN) returns all
rows from both tables – if there's no matching row in the
second table, NULLs are returned.

CITY
country_id id name

6 6 San Marino
7 7 Vatican City
5 9 Greece
10 11 Monaco

COUNTRY
name id

San Marino 6
Vatican City 7

Greece 9
Monaco 10

NATURAL JOIN

SELECT city.name, country.name
FROM city
NATURAL JOIN country;

NATURAL JOIN will join tables by all columns with the
same name.

NATURAL JOIN used these columns to match rows:
city.id, city.name, country.id, country.name
NATURAL JOIN is very rarely used in practice.

CROSS JOIN

SELECT city.name, country.name
FROM city
CROSS JOIN country;

SELECT city.name, country.name
FROM city, country;

CROSS JOIN returns all possible combinations of rows
from both tables. There are two syntaxes available.

COUNTRY
id name
1 France
2 Germany
1 France
2 Germany

CITY
id name country_id
1 Paris 1
1 Paris 1
2 Berlin 2
2 Berlin 2

QUERYING SINGLE TABLE
Fetch all columns from the country table:

SELECT *
FROM country;

Fetch id and name columns from the city table:

SELECT id, name
FROM city;

SELECT name
FROM city
ORDER BY rating DESC;

Fetch city names sorted by the rating column
in the DESCending order:

SELECT name
FROM city
ORDER BY rating [ASC];

Fetch city names sorted by the rating column
in the default ASCending order:

SELECT name
FROM city
WHERE name LIKE '_ublin';

Fetch names of cities that start with any letter followed by
'ublin' (like Dublin in Ireland or Lublin in Poland):

SELECT name
FROM city
WHERE name != 'Berlin'
 AND name != 'Madrid';

Fetch names of cities that are neither Berlin nor Madrid:

SELECT name
FROM city
WHERE rating IS NOT NULL;

Fetch names of cities that don't miss a rating value:

SELECT name
FROM city
WHERE country_id IN (1, 4, 7, 8);

Fetch names of cities that are in countries with IDs 1, 4, 7,
or 8:

FILTERING THE OUTPUT

SELECT name
FROM city
WHERE rating > 3;

Fetch names of cities that have a rating above 3:

COMPARISON OPERATORS

SELECT name
FROM city
WHERE name LIKE 'P%'
 OR name LIKE '%s';

Fetch names of cities that start with a 'P' or end with an 's':

TEXT OPERATORS

SELECT name
FROM city
WHERE population BETWEEN 500000 AND
5000000;

Fetch names of cities that have a population between
500K and 5M:

OTHER OPERATORS

https://learnsql.com/
https://learnsql.com/course/sql-queries

LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SATry out the interactive SQL Basics course at LearnSQL.com, and check out our other SQL courses.

SQL Basics Cheat Sheet

• avg(expr) − average value for rows within the group

• count(expr) − count of values for rows within the group

• max(expr) − maximum value within the group

• min(expr) − minimum value within the group

• sum(expr) − sum of values within the group

AGGREGATE FUNCTIONS

CYCLING
id name country
1 YK DE
2 ZG DE
3 WT PL
...

SKATING
id name country
1 YK DE
2 DF DE
3 AK PL
...

AGGREGATION AND GROUPING
GROUP BY groups together rows that have the same values in specified
columns.
It computes summaries (aggregates) for each unique combination of values.

SUBQUERIES
A subquery is a query that is nested inside another query, or inside another
subquery. There are different types of subqueries.

SET OPERATIONS
Set operations are used to combine the results of two or more queries into a
single result. The combined queries must return the same number of columns
and compatible data types. The names of the corresponding columns can be
different.

CITY
country_id count

1 3
2 3
4 2

CITY
id name country_id
1 Paris 1
101 Marseille 1
102 Lyon 1
2 Berlin 2
103 Hamburg 2
104 Munich 2
3 Warsaw 4
105 Cracow 4

EXAMPLE QUERIES

SELECT COUNT(*)
FROM city;

Find out the number of cities:

SELECT COUNT(rating)
FROM city;

Find out the number of cities with non-null ratings:

SELECT COUNT(DISTINCT country_id)
FROM city;

Find out the number of distinctive country values:

SELECT MIN(population), MAX(population)
FROM country;

Find out the smallest and the greatest country populations:

SELECT country_id, SUM(population)
FROM city
GROUP BY country_id;

Find out the total population of cities in respective countries:

SELECT country_id, AVG(rating)
FROM city
GROUP BY country_id
HAVING AVG(rating) > 3.0;

Find out the average rating for cities in respective countries if the average
is above 3.0:

UNION

SELECT name
FROM cycling
WHERE country = 'DE'
UNION / UNION ALL
SELECT name
FROM skating
WHERE country = 'DE';

UNION combines the results of two result sets and removes duplicates.
UNION ALL doesn't remove duplicate rows.

This query displays German cyclists together with German skaters:

INTERSECT

SELECT name
FROM cycling
WHERE country = 'DE'
INTERSECT
SELECT name
FROM skating
WHERE country = 'DE';

INTERSECT returns only rows that appear in both result sets.

This query displays German cyclists who are also German skaters at the same
time:

EXCEPT

SELECT name
FROM cycling
WHERE country = 'DE'
EXCEPT / MINUS
SELECT name
FROM skating
WHERE country = 'DE';

EXCEPT returns only the rows that appear in the first result set but do not
appear in the second result set.

This query displays German cyclists unless they are also German skaters at
the same time:

SINGLE VALUE

SELECT name FROM city
WHERE rating = (
 SELECT rating
 FROM city
 WHERE name = 'Paris'
);

The simplest subquery returns exactly one column and exactly one row. It
can be used with comparison operators =, <, <=, >, or >=.

This query finds cities with the same rating as Paris:

MULTIPLE VALUES

SELECT name
FROM city
WHERE country_id IN (
 SELECT country_id
 FROM country
 WHERE population > 20000000
);

A subquery can also return multiple columns or multiple rows. Such
subqueries can be used with operators IN, EXISTS, ALL, or ANY.

This query finds cities in countries that have a population above 20M:

CORRELATED

SELECT *
FROM city main_city
WHERE population > (
 SELECT AVG(population)
 FROM city average_city
 WHERE average_city.country_id = main_city.country_id
);

This query finds countries that have at least one city:
SELECT name
FROM country
WHERE EXISTS (
 SELECT *
 FROM city
 WHERE country_id = country.id
);

A correlated subquery refers to the tables introduced in the outer query.
A correlated subquery depends on the outer query. It cannot be run
independently from the outer query.

This query finds cities with a population greater than the average
population in the country:

https://learnsql.com/
https://learnsql.com/course/sql-queries

